‘\V

S

J

PROCESS The Producer
SYNCHRONIZATION Consumer Problem

Note that € this line is NOT what it seems!! ‘E“"/’\
T o
is really --> register = counter C oot X4 _irS =
register = register + 1 L ) s°
counter = register \/
At a micro level, the following scenario could occur using this code:
TO; Producer Execute register1 = counter register1 =5
T1; Producer Execute register1 = register1 + 1 register1 = 6
T2; Consumer Execute register2 = counter register2 =5
T3; Consumer Execute register2 = register2 - 1 register2 =4
T4; Producer Execute counter =register1 counter =6
T5; Consumer Execute counter =register2 counter =4

Process Synchronization

CA‘O’V\



PROCESS
SYNCHRONIZATION

Critical Sections

A section of code, common to n cooperatin , in which the
T processes may be accessing common variables.

—_—

A Critical Section Environment contains:

Entry Section Code requesting entry into the critical section.

Critical Section Code in which only one process can execute at any one time.
Exit Section The end of the critical section, releasing or allowing others in.
Remainder Section Rest of the code AFTER the critical section.

Process Synchronization



PROCESS Critical Sections
SYNCHRONIZATION

The critical section must ENFORCE ALL THREE of the following rules:

Mutual Exclusion: No more than one process can execute in its critical section
at one time.

" Lo |
Progress: If no one is in the critical section and someone wants in,
then those processes not in their remainder section must
be able to decide in a finite time who should go in.

—_—

Bounded Wait: All requesters must eventually be let | itical

section.

Process Synchronization




PROCESS
SYNCHRONIZATION

Two Processes
Software

do {
while (turn A= 1);
/* critical section */
turn = j;
/* remainder section */
} while(TRUE);

Process Synchronization



PROCESS
SYNCHRONIZATION

Here we try a succession of increasingly complicated solutions to the problem of
creating valid entry sections.

Two Processes
Software

NOTE: In all examples, i is the current process, j the "other" process. In
these examples, envision the same code running on two processors at the same
time.

TOGGLED ACCESS:

do {
while (turn A= i);
/* critical section */

turn = j;
/* remainder section */ Are the three Critical Section
} while(TRUE); Requirements Met?

. Process Synchronization



